public final class

WavExtractor

extends java.lang.Object

implements Extractor

 java.lang.Object

↳androidx.media3.extractor.wav.WavExtractor

Gradle dependencies

compile group: 'androidx.media3', name: 'media3-extractor', version: '1.5.0-alpha01'

  • groupId: androidx.media3
  • artifactId: media3-extractor
  • version: 1.5.0-alpha01

Artifact androidx.media3:media3-extractor:1.5.0-alpha01 it located at Google repository (https://maven.google.com/)

Overview

Extracts data from WAV byte streams.

Summary

Fields
public static final ExtractorsFactoryFACTORY

Factory for WavExtractor instances.

Constructors
publicWavExtractor()

Methods
public voidinit(ExtractorOutput output)

public intread(ExtractorInput input, PositionHolder seekPosition)

public voidrelease()

public voidseek(long position, long timeUs)

public booleansniff(ExtractorInput input)

from java.lang.Objectclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Fields

public static final ExtractorsFactory FACTORY

Factory for WavExtractor instances.

Constructors

public WavExtractor()

Methods

public boolean sniff(ExtractorInput input)

public void init(ExtractorOutput output)

public void seek(long position, long timeUs)

public void release()

public int read(ExtractorInput input, PositionHolder seekPosition)

Source

/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package androidx.media3.extractor.wav;

import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.annotation.ElementType.TYPE_USE;

import android.util.Pair;
import androidx.annotation.IntDef;
import androidx.media3.common.C;
import androidx.media3.common.Format;
import androidx.media3.common.MimeTypes;
import androidx.media3.common.ParserException;
import androidx.media3.common.util.Assertions;
import androidx.media3.common.util.Log;
import androidx.media3.common.util.ParsableByteArray;
import androidx.media3.common.util.UnstableApi;
import androidx.media3.common.util.Util;
import androidx.media3.extractor.Extractor;
import androidx.media3.extractor.ExtractorInput;
import androidx.media3.extractor.ExtractorOutput;
import androidx.media3.extractor.ExtractorsFactory;
import androidx.media3.extractor.PositionHolder;
import androidx.media3.extractor.TrackOutput;
import androidx.media3.extractor.WavUtil;
import java.io.IOException;
import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.checkerframework.checker.nullness.qual.EnsuresNonNull;
import org.checkerframework.checker.nullness.qual.MonotonicNonNull;
import org.checkerframework.checker.nullness.qual.RequiresNonNull;

/** Extracts data from WAV byte streams. */
@UnstableApi
public final class WavExtractor implements Extractor {

  private static final String TAG = "WavExtractor";

  /**
   * When outputting PCM data to a {@link TrackOutput}, we can choose how many frames are grouped
   * into each sample, and hence each sample's duration. This is the target number of samples to
   * output for each second of media, meaning that each sample will have a duration of ~100ms.
   */
  private static final int TARGET_SAMPLES_PER_SECOND = 10;

  /** Factory for {@link WavExtractor} instances. */
  public static final ExtractorsFactory FACTORY = () -> new Extractor[] {new WavExtractor()};

  /** Parser state. */
  @Documented
  @Retention(RetentionPolicy.SOURCE)
  @Target(TYPE_USE)
  @IntDef({
    STATE_READING_FILE_TYPE,
    STATE_READING_RF64_SAMPLE_DATA_SIZE,
    STATE_READING_FORMAT,
    STATE_SKIPPING_TO_SAMPLE_DATA,
    STATE_READING_SAMPLE_DATA
  })
  private @interface State {}

  private static final int STATE_READING_FILE_TYPE = 0;
  private static final int STATE_READING_RF64_SAMPLE_DATA_SIZE = 1;
  private static final int STATE_READING_FORMAT = 2;
  private static final int STATE_SKIPPING_TO_SAMPLE_DATA = 3;
  private static final int STATE_READING_SAMPLE_DATA = 4;

  private @MonotonicNonNull ExtractorOutput extractorOutput;
  private @MonotonicNonNull TrackOutput trackOutput;
  private @State int state;
  private long rf64SampleDataSize;
  private @MonotonicNonNull OutputWriter outputWriter;
  private int dataStartPosition;
  private long dataEndPosition;

  public WavExtractor() {
    state = STATE_READING_FILE_TYPE;
    rf64SampleDataSize = C.LENGTH_UNSET;
    dataStartPosition = C.INDEX_UNSET;
    dataEndPosition = C.INDEX_UNSET;
  }

  @Override
  public boolean sniff(ExtractorInput input) throws IOException {
    return WavHeaderReader.checkFileType(input);
  }

  @Override
  public void init(ExtractorOutput output) {
    extractorOutput = output;
    trackOutput = output.track(0, C.TRACK_TYPE_AUDIO);
    output.endTracks();
  }

  @Override
  public void seek(long position, long timeUs) {
    state = position == 0 ? STATE_READING_FILE_TYPE : STATE_READING_SAMPLE_DATA;
    if (outputWriter != null) {
      outputWriter.reset(timeUs);
    }
  }

  @Override
  public void release() {
    // Do nothing
  }

  @Override
  public @ReadResult int read(ExtractorInput input, PositionHolder seekPosition)
      throws IOException {
    assertInitialized();
    switch (state) {
      case STATE_READING_FILE_TYPE:
        readFileType(input);
        return Extractor.RESULT_CONTINUE;
      case STATE_READING_RF64_SAMPLE_DATA_SIZE:
        readRf64SampleDataSize(input);
        return Extractor.RESULT_CONTINUE;
      case STATE_READING_FORMAT:
        readFormat(input);
        return Extractor.RESULT_CONTINUE;
      case STATE_SKIPPING_TO_SAMPLE_DATA:
        skipToSampleData(input);
        return Extractor.RESULT_CONTINUE;
      case STATE_READING_SAMPLE_DATA:
        return readSampleData(input);
      default:
        throw new IllegalStateException();
    }
  }

  @EnsuresNonNull({"extractorOutput", "trackOutput"})
  private void assertInitialized() {
    Assertions.checkStateNotNull(trackOutput);
    Util.castNonNull(extractorOutput);
  }

  private void readFileType(ExtractorInput input) throws IOException {
    Assertions.checkState(input.getPosition() == 0);
    if (dataStartPosition != C.INDEX_UNSET) {
      input.skipFully(dataStartPosition);
      state = STATE_READING_SAMPLE_DATA;
      return;
    }
    if (!WavHeaderReader.checkFileType(input)) {
      // Should only happen if the media wasn't sniffed.
      throw ParserException.createForMalformedContainer(
          "Unsupported or unrecognized wav file type.", /* cause= */ null);
    }
    input.skipFully((int) (input.getPeekPosition() - input.getPosition()));
    state = STATE_READING_RF64_SAMPLE_DATA_SIZE;
  }

  private void readRf64SampleDataSize(ExtractorInput input) throws IOException {
    rf64SampleDataSize = WavHeaderReader.readRf64SampleDataSize(input);
    state = STATE_READING_FORMAT;
  }

  @RequiresNonNull({"extractorOutput", "trackOutput"})
  private void readFormat(ExtractorInput input) throws IOException {
    WavFormat wavFormat = WavHeaderReader.readFormat(input);
    if (wavFormat.formatType == WavUtil.TYPE_IMA_ADPCM) {
      outputWriter = new ImaAdPcmOutputWriter(extractorOutput, trackOutput, wavFormat);
    } else if (wavFormat.formatType == WavUtil.TYPE_ALAW) {
      outputWriter =
          new PassthroughOutputWriter(
              extractorOutput,
              trackOutput,
              wavFormat,
              MimeTypes.AUDIO_ALAW,
              /* pcmEncoding= */ Format.NO_VALUE);
    } else if (wavFormat.formatType == WavUtil.TYPE_MLAW) {
      outputWriter =
          new PassthroughOutputWriter(
              extractorOutput,
              trackOutput,
              wavFormat,
              MimeTypes.AUDIO_MLAW,
              /* pcmEncoding= */ Format.NO_VALUE);
    } else {
      @C.PcmEncoding
      int pcmEncoding =
          WavUtil.getPcmEncodingForType(wavFormat.formatType, wavFormat.bitsPerSample);
      if (pcmEncoding == C.ENCODING_INVALID) {
        throw ParserException.createForUnsupportedContainerFeature(
            "Unsupported WAV format type: " + wavFormat.formatType);
      }
      outputWriter =
          new PassthroughOutputWriter(
              extractorOutput, trackOutput, wavFormat, MimeTypes.AUDIO_RAW, pcmEncoding);
    }
    state = STATE_SKIPPING_TO_SAMPLE_DATA;
  }

  private void skipToSampleData(ExtractorInput input) throws IOException {
    Pair<Long, Long> dataBounds = WavHeaderReader.skipToSampleData(input);
    dataStartPosition = dataBounds.first.intValue();
    long dataSize = dataBounds.second;
    if (rf64SampleDataSize != C.LENGTH_UNSET && dataSize == 0xFFFFFFFFL) {
      // Following EBU - Tech 3306-2007, the data size indicated in the ds64 chunk should only be
      // used if the size of the data chunk is unset.
      dataSize = rf64SampleDataSize;
    }
    dataEndPosition = dataStartPosition + dataSize;
    long inputLength = input.getLength();
    if (inputLength != C.LENGTH_UNSET && dataEndPosition > inputLength) {
      Log.w(TAG, "Data exceeds input length: " + dataEndPosition + ", " + inputLength);
      dataEndPosition = inputLength;
    }
    Assertions.checkNotNull(outputWriter).init(dataStartPosition, dataEndPosition);
    state = STATE_READING_SAMPLE_DATA;
  }

  private @ReadResult int readSampleData(ExtractorInput input) throws IOException {
    Assertions.checkState(dataEndPosition != C.INDEX_UNSET);
    long bytesLeft = dataEndPosition - input.getPosition();
    return Assertions.checkNotNull(outputWriter).sampleData(input, bytesLeft)
        ? RESULT_END_OF_INPUT
        : RESULT_CONTINUE;
  }

  /** Writes to the extractor's output. */
  private interface OutputWriter {

    /**
     * Resets the writer.
     *
     * @param timeUs The new start position in microseconds.
     */
    void reset(long timeUs);

    /**
     * Initializes the writer.
     *
     * <p>Must be called once, before any calls to {@link #sampleData(ExtractorInput, long)}.
     *
     * @param dataStartPosition The byte position (inclusive) in the stream at which data starts.
     * @param dataEndPosition The end position (exclusive) in the stream at which data ends.
     * @throws ParserException If an error occurs initializing the writer.
     */
    void init(int dataStartPosition, long dataEndPosition) throws ParserException;

    /**
     * Consumes sample data from {@code input}, writing corresponding samples to the extractor's
     * output.
     *
     * <p>Must not be called until after {@link #init(int, long)} has been called.
     *
     * @param input The input from which to read.
     * @param bytesLeft The number of sample data bytes left to be read from the input.
     * @return Whether the end of the sample data has been reached.
     * @throws IOException If an error occurs reading from the input.
     */
    boolean sampleData(ExtractorInput input, long bytesLeft) throws IOException;
  }

  private static final class PassthroughOutputWriter implements OutputWriter {

    private final ExtractorOutput extractorOutput;
    private final TrackOutput trackOutput;
    private final WavFormat wavFormat;
    private final Format format;

    /** The target size of each output sample, in bytes. */
    private final int targetSampleSizeBytes;

    /** The time at which the writer was last {@link #reset}. */
    private long startTimeUs;

    /**
     * The number of bytes that have been written to {@link #trackOutput} but have yet to be
     * included as part of a sample (i.e. the corresponding call to {@link
     * TrackOutput#sampleMetadata} has yet to be made).
     */
    private int pendingOutputBytes;

    /**
     * The total number of frames in samples that have been written to the trackOutput since the
     * last call to {@link #reset}.
     */
    private long outputFrameCount;

    public PassthroughOutputWriter(
        ExtractorOutput extractorOutput,
        TrackOutput trackOutput,
        WavFormat wavFormat,
        String mimeType,
        @C.PcmEncoding int pcmEncoding)
        throws ParserException {
      this.extractorOutput = extractorOutput;
      this.trackOutput = trackOutput;
      this.wavFormat = wavFormat;

      int bytesPerFrame = wavFormat.numChannels * wavFormat.bitsPerSample / 8;
      // Validate the WAV format. Blocks are expected to correspond to single frames.
      if (wavFormat.blockSize != bytesPerFrame) {
        throw ParserException.createForMalformedContainer(
            "Expected block size: " + bytesPerFrame + "; got: " + wavFormat.blockSize,
            /* cause= */ null);
      }

      int constantBitrate = wavFormat.frameRateHz * bytesPerFrame * 8;
      targetSampleSizeBytes =
          max(bytesPerFrame, wavFormat.frameRateHz * bytesPerFrame / TARGET_SAMPLES_PER_SECOND);
      format =
          new Format.Builder()
              .setSampleMimeType(mimeType)
              .setAverageBitrate(constantBitrate)
              .setPeakBitrate(constantBitrate)
              .setMaxInputSize(targetSampleSizeBytes)
              .setChannelCount(wavFormat.numChannels)
              .setSampleRate(wavFormat.frameRateHz)
              .setPcmEncoding(pcmEncoding)
              .build();
    }

    @Override
    public void reset(long timeUs) {
      startTimeUs = timeUs;
      pendingOutputBytes = 0;
      outputFrameCount = 0;
    }

    @Override
    public void init(int dataStartPosition, long dataEndPosition) {
      extractorOutput.seekMap(
          new WavSeekMap(wavFormat, /* framesPerBlock= */ 1, dataStartPosition, dataEndPosition));
      trackOutput.format(format);
    }

    @Override
    public boolean sampleData(ExtractorInput input, long bytesLeft) throws IOException {
      // Write sample data until we've reached the target sample size, or the end of the data.
      while (bytesLeft > 0 && pendingOutputBytes < targetSampleSizeBytes) {
        int bytesToRead = (int) min(targetSampleSizeBytes - pendingOutputBytes, bytesLeft);
        int bytesAppended = trackOutput.sampleData(input, bytesToRead, true);
        if (bytesAppended == RESULT_END_OF_INPUT) {
          bytesLeft = 0;
        } else {
          pendingOutputBytes += bytesAppended;
          bytesLeft -= bytesAppended;
        }
      }

      // Write the corresponding sample metadata. Samples must be a whole number of frames. It's
      // possible that the number of pending output bytes is not a whole number of frames if the
      // stream ended unexpectedly.
      int bytesPerFrame = wavFormat.blockSize;
      int pendingFrames = pendingOutputBytes / bytesPerFrame;
      if (pendingFrames > 0) {
        long timeUs =
            startTimeUs
                + Util.scaleLargeTimestamp(
                    outputFrameCount, C.MICROS_PER_SECOND, wavFormat.frameRateHz);
        int size = pendingFrames * bytesPerFrame;
        int offset = pendingOutputBytes - size;
        trackOutput.sampleMetadata(
            timeUs, C.BUFFER_FLAG_KEY_FRAME, size, offset, /* cryptoData= */ null);
        outputFrameCount += pendingFrames;
        pendingOutputBytes = offset;
      }

      return bytesLeft <= 0;
    }
  }

  private static final class ImaAdPcmOutputWriter implements OutputWriter {

    private static final int[] INDEX_TABLE = {
      -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8
    };

    private static final int[] STEP_TABLE = {
      7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66,
      73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408,
      449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
      2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630,
      9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
      32767
    };

    private final ExtractorOutput extractorOutput;
    private final TrackOutput trackOutput;
    private final WavFormat wavFormat;

    /** Number of frames per block of the input (yet to be decoded) data. */
    private final int framesPerBlock;

    /** Target for the input (yet to be decoded) data. */
    private final byte[] inputData;

    /** Target for decoded (yet to be output) data. */
    private final ParsableByteArray decodedData;

    /** The target size of each output sample, in frames. */
    private final int targetSampleSizeFrames;

    /** The output format. */
    private final Format format;

    /** The number of pending bytes in {@link #inputData}. */
    private int pendingInputBytes;

    /** The time at which the writer was last {@link #reset}. */
    private long startTimeUs;

    /**
     * The number of bytes that have been written to {@link #trackOutput} but have yet to be
     * included as part of a sample (i.e. the corresponding call to {@link
     * TrackOutput#sampleMetadata} has yet to be made).
     */
    private int pendingOutputBytes;

    /**
     * The total number of frames in samples that have been written to the trackOutput since the
     * last call to {@link #reset}.
     */
    private long outputFrameCount;

    public ImaAdPcmOutputWriter(
        ExtractorOutput extractorOutput, TrackOutput trackOutput, WavFormat wavFormat)
        throws ParserException {
      this.extractorOutput = extractorOutput;
      this.trackOutput = trackOutput;
      this.wavFormat = wavFormat;
      targetSampleSizeFrames = max(1, wavFormat.frameRateHz / TARGET_SAMPLES_PER_SECOND);

      ParsableByteArray scratch = new ParsableByteArray(wavFormat.extraData);
      scratch.readLittleEndianUnsignedShort();
      framesPerBlock = scratch.readLittleEndianUnsignedShort();

      int numChannels = wavFormat.numChannels;
      // Validate the WAV format. This calculation is defined in "Microsoft Multimedia Standards
      // Update
      // - New Multimedia Types and Data Techniques" (1994). See the "IMA ADPCM Wave Type" and "DVI
      // ADPCM Wave Type" sections, and the calculation of wSamplesPerBlock in the latter.
      int expectedFramesPerBlock =
          (((wavFormat.blockSize - (4 * numChannels)) * 8)
                  / (wavFormat.bitsPerSample * numChannels))
              + 1;
      if (framesPerBlock != expectedFramesPerBlock) {
        throw ParserException.createForMalformedContainer(
            "Expected frames per block: " + expectedFramesPerBlock + "; got: " + framesPerBlock,
            /* cause= */ null);
      }

      // Calculate the number of blocks we'll need to decode to obtain an output sample of the
      // target sample size, and allocate suitably sized buffers for input and decoded data.
      int maxBlocksToDecode = Util.ceilDivide(targetSampleSizeFrames, framesPerBlock);
      inputData = new byte[maxBlocksToDecode * wavFormat.blockSize];
      decodedData =
          new ParsableByteArray(
              maxBlocksToDecode * numOutputFramesToBytes(framesPerBlock, numChannels));

      // Create the format. We calculate the bitrate of the data before decoding, since this is the
      // bitrate of the stream itself.
      int constantBitrate = wavFormat.frameRateHz * wavFormat.blockSize * 8 / framesPerBlock;
      format =
          new Format.Builder()
              .setSampleMimeType(MimeTypes.AUDIO_RAW)
              .setAverageBitrate(constantBitrate)
              .setPeakBitrate(constantBitrate)
              .setMaxInputSize(numOutputFramesToBytes(targetSampleSizeFrames, numChannels))
              .setChannelCount(wavFormat.numChannels)
              .setSampleRate(wavFormat.frameRateHz)
              .setPcmEncoding(C.ENCODING_PCM_16BIT)
              .build();
    }

    @Override
    public void reset(long timeUs) {
      pendingInputBytes = 0;
      startTimeUs = timeUs;
      pendingOutputBytes = 0;
      outputFrameCount = 0;
    }

    @Override
    public void init(int dataStartPosition, long dataEndPosition) {
      extractorOutput.seekMap(
          new WavSeekMap(wavFormat, framesPerBlock, dataStartPosition, dataEndPosition));
      trackOutput.format(format);
    }

    @Override
    public boolean sampleData(ExtractorInput input, long bytesLeft) throws IOException {
      // Calculate the number of additional frames that we need on the output side to complete a
      // sample of the target size.
      int targetFramesRemaining =
          targetSampleSizeFrames - numOutputBytesToFrames(pendingOutputBytes);
      // Calculate the whole number of blocks that we need to decode to obtain this many frames.
      int blocksToDecode = Util.ceilDivide(targetFramesRemaining, framesPerBlock);
      int targetReadBytes = blocksToDecode * wavFormat.blockSize;

      // Read input data until we've reached the target number of blocks, or the end of the data.
      boolean endOfSampleData = bytesLeft == 0;
      while (!endOfSampleData && pendingInputBytes < targetReadBytes) {
        int bytesToRead = (int) min(targetReadBytes - pendingInputBytes, bytesLeft);
        int bytesAppended = input.read(inputData, pendingInputBytes, bytesToRead);
        if (bytesAppended == RESULT_END_OF_INPUT) {
          endOfSampleData = true;
        } else {
          pendingInputBytes += bytesAppended;
        }
      }

      int pendingBlockCount = pendingInputBytes / wavFormat.blockSize;
      if (pendingBlockCount > 0) {
        // We have at least one whole block to decode.
        decode(inputData, pendingBlockCount, decodedData);
        pendingInputBytes -= pendingBlockCount * wavFormat.blockSize;

        // Write all of the decoded data to the track output.
        int decodedDataSize = decodedData.limit();
        trackOutput.sampleData(decodedData, decodedDataSize);
        pendingOutputBytes += decodedDataSize;

        // Output the next sample at the target size.
        int pendingOutputFrames = numOutputBytesToFrames(pendingOutputBytes);
        if (pendingOutputFrames >= targetSampleSizeFrames) {
          writeSampleMetadata(targetSampleSizeFrames);
        }
      }

      // If we've reached the end of the data, we might need to output a final partial sample.
      if (endOfSampleData) {
        int pendingOutputFrames = numOutputBytesToFrames(pendingOutputBytes);
        if (pendingOutputFrames > 0) {
          writeSampleMetadata(pendingOutputFrames);
        }
      }

      return endOfSampleData;
    }

    private void writeSampleMetadata(int sampleFrames) {
      long timeUs =
          startTimeUs
              + Util.scaleLargeTimestamp(
                  outputFrameCount, C.MICROS_PER_SECOND, wavFormat.frameRateHz);
      int size = numOutputFramesToBytes(sampleFrames);
      int offset = pendingOutputBytes - size;
      trackOutput.sampleMetadata(
          timeUs, C.BUFFER_FLAG_KEY_FRAME, size, offset, /* cryptoData= */ null);
      outputFrameCount += sampleFrames;
      pendingOutputBytes -= size;
    }

    /**
     * Decodes IMA ADPCM data to 16 bit PCM.
     *
     * @param input The input data to decode.
     * @param blockCount The number of blocks to decode.
     * @param output The output into which the decoded data will be written.
     */
    private void decode(byte[] input, int blockCount, ParsableByteArray output) {
      for (int blockIndex = 0; blockIndex < blockCount; blockIndex++) {
        for (int channelIndex = 0; channelIndex < wavFormat.numChannels; channelIndex++) {
          decodeBlockForChannel(input, blockIndex, channelIndex, output.getData());
        }
      }
      int decodedDataSize = numOutputFramesToBytes(framesPerBlock * blockCount);
      output.setPosition(0);
      output.setLimit(decodedDataSize);
    }

    private void decodeBlockForChannel(
        byte[] input, int blockIndex, int channelIndex, byte[] output) {
      int blockSize = wavFormat.blockSize;
      int numChannels = wavFormat.numChannels;

      // The input data consists for a four byte header [Ci] for each of the N channels, followed
      // by interleaved data segments [Ci-DATAj], each of which are four bytes long.
      //
      // [C1][C2]...[CN] [C1-Data0][C2-Data0]...[CN-Data0] [C1-Data1][C2-Data1]...[CN-Data1] etc
      //
      // Compute the start indices for the [Ci] and [Ci-Data0] for the current channel, as well as
      // the number of data bytes for the channel in the block.
      int blockStartIndex = blockIndex * blockSize;
      int headerStartIndex = blockStartIndex + channelIndex * 4;
      int dataStartIndex = headerStartIndex + numChannels * 4;
      int dataSizeBytes = blockSize / numChannels - 4;

      // Decode initialization. Casting to a short is necessary for the most significant bit to be
      // treated as -2^15 rather than 2^15.
      int predictedSample =
          (short) (((input[headerStartIndex + 1] & 0xFF) << 8) | (input[headerStartIndex] & 0xFF));
      int stepIndex = min(input[headerStartIndex + 2] & 0xFF, 88);
      int step = STEP_TABLE[stepIndex];

      // Output the initial 16 bit PCM sample from the header.
      int outputIndex = (blockIndex * framesPerBlock * numChannels + channelIndex) * 2;
      output[outputIndex] = (byte) (predictedSample & 0xFF);
      output[outputIndex + 1] = (byte) (predictedSample >> 8);

      // We examine each data byte twice during decode.
      for (int i = 0; i < dataSizeBytes * 2; i++) {
        int dataSegmentIndex = i / 8;
        int dataSegmentOffset = (i / 2) % 4;
        int dataIndex = dataStartIndex + (dataSegmentIndex * numChannels * 4) + dataSegmentOffset;

        int originalSample = input[dataIndex] & 0xFF;
        if (i % 2 == 0) {
          originalSample &= 0x0F; // Bottom four bits.
        } else {
          originalSample >>= 4; // Top four bits.
        }

        int delta = originalSample & 0x07;
        int difference = ((2 * delta + 1) * step) >> 3;

        if ((originalSample & 0x08) != 0) {
          difference = -difference;
        }

        predictedSample += difference;
        predictedSample = Util.constrainValue(predictedSample, /* min= */ -32768, /* max= */ 32767);

        // Output the next 16 bit PCM sample to the correct position in the output.
        outputIndex += 2 * numChannels;
        output[outputIndex] = (byte) (predictedSample & 0xFF);
        output[outputIndex + 1] = (byte) (predictedSample >> 8);

        stepIndex += INDEX_TABLE[originalSample];
        stepIndex = Util.constrainValue(stepIndex, /* min= */ 0, /* max= */ STEP_TABLE.length - 1);
        step = STEP_TABLE[stepIndex];
      }
    }

    private int numOutputBytesToFrames(int bytes) {
      return bytes / (2 * wavFormat.numChannels);
    }

    private int numOutputFramesToBytes(int frames) {
      return numOutputFramesToBytes(frames, wavFormat.numChannels);
    }

    private static int numOutputFramesToBytes(int frames, int numChannels) {
      return frames * 2 * numChannels;
    }
  }
}